4
N

Python Basic Course

Part IV

Stefano Alberto Russo

Outline

e Part I: introduction and basics
o Whatis Python
o Tools and “hello world”

o Basic syntax and data types

m assignments, types and operators
m conditional blocks and loops

e Part lI: architecture
Functions

Scope
Built-ins
Modules

©)
©)
©)
©)

e Part IV: manipulating data
List operations

String operations

Dealing bad data

@)
@)
@)
o Reading and writing files

e Part VI: Pandas
o Series and Dataframes
o Common operations
o How to read documentation

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> What is Pandas?

- Pandas is a “fast, powerful, flexible and easy to use open source data analysis and
manipulation tool, built on top of the Python programming language”

- Offers data structures and operations for manipulating numerical tables in form of
arrays and matrices, and time series to some extent.

- Pandas does not marry entirely the Python philosophy: often requires working with
indexes to iterate over data structures and adopting an “old-fashioned” mindset.

- The name is derived from the term "panel data", an econometrics term for data sets
that include observations over multiple time periods for the same individuals.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> What is Pandas?

e e
3:{ (\n f" /| !,L |;"| :t \ﬁ". rf‘\ f ‘V lﬂr

SRARRARARA)Y RV

il ‘ N
3

(T e
m"“-‘% Y ety «-'\.,' .« ‘h"‘f f’\'ﬂ

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> How to install Pandas?

- Being an extra Python library, it needs to be installed.

- The Python Package Manager can be used for this in nearly all environments:

$ pip install pandas

- In Repl.it, it is automatically installed, so you don't have to worry about it.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> How to use Pandas?

- As any other library, Pandas needs to be imported before you can use it

- You import libraries exactly as you import modules:

import pandas

- You will usually see it imported in a renamed way, for brevity when using it

import pandas as pd

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Other libraries involved

- Numpy (Numerical Python) is another very common library used
together with Pandas:

import pandas as pd

import numpy as np

- Matplotlib is instead a library for plotting, and in particular the pyplot
module is very commonly used:

import matplotlib.pyplot as plt

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
2 The Jupyter Notebooks

- Pandas has a strong interactive component and for interactive analysis gives it best
when used with the Jupyter Notebooks

- These are computational graphical environments which wrap a Python interpreter
- Several services derived from this approach, as Google Colab or Kaggle Notebooks.

- Installing and using the Jupyter engine in your environment it is not covered here,
but just for reference:

$ pip install notebook

$ jupyter notebook

..and then open your browser on localhost:8888

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
2 The Jupyter Notebooks

[J ® & Test Notebook X + (+]
C @ rosetta-tasks.oats.inaf.it:9001/notebooks/Test%20Notebook.ipynb * @ :
-
s JU pyter Test Notebook Last Checkpoint: 4 minutes ago (unsaved changes) !,
File Edit View Insert Cell Kernel Help Trusted ‘ Python3 O
B+ < @ B 44 ¥ MRin B C » Code v|| &
In [1]: import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

mu = 0

std = 1

X = np.linspace(start=-4, stop=4, num=100)
y = stats.norm.pdf(x, mu, std)
plt.plot(x, y)

plt.show()

040
035
030

025

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- Pandas Series are one of the most basic data types. You can think of them as
Python lists, but provide much more features.

series = pd.Series([4,5,6])

print(series[0])

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- Series have an index to speed up data access. By defaults, it is just composed
by the positions of the elements

series = pd.Series([4,5,6])

print(series)

dtype: int64

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- Series have an index to speed up data access. By defaults, it is just composed by the
positions of the elements

series = pd.Series([4,5,6])

print(series)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])

series.index = ['a','b', '¢c']

dtype: int64

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])
series.index = ['a','b', '¢c']

print(series[0])

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])
series.index = ['a','b', '¢c']

print(series['a'])

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])
series.index = ['a','b', '¢c']

print(series.iloc[@])

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])
series.index = ['a','b', '¢c']

print(series.loc['a'])

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])
series.index = ['a','b', '¢c']

print(series.loc['a'])

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- Both Series and their indexes supports being iterated on, and allow
to be more pythonic in some contexts:

series = pd.Series([4,5,6])
for item in series:

print(item)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- Both Series and their indexes supports being iterated on, and allow
to be more pythonic in some contexts:

series = pd.Series([4,5,6])
for index_item in series.index:

print(index_item)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- Several functions are ready to be applied to the series, unlike the Python lists.
Mean, min, max etc. are just some examples of them.

series = pd.Series([4,5,6])

print(series.mean())

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> Series

- Several functions are ready to be applied to the series, unlike the Python lists.
Mean, min, max etc. are just some examples of them.

series = pd.Series([4,5,6])

print(series.max())

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- DataFrames are basically matices. They support multiple axes, indexes,
and labels for columns.

df = pd.DataFrame([[4,40],[5,50],[6,60]])
print(df)

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- DataFrames are basically matices. They support multiple axes, indexes,
and labels for columns.

df = pd.DataFrame([[4,40],[5,50],[6,60]])
print(df)

Column labels

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- If accessing them by “position”, they return a column which is returned as
as Series which “inherits” the index

df = pd.DataFrame([[4,40],[5,50],[6,60]])
print(df[1])

40
50
p 60
Name: 1, dtype: int64

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- If accessing them by “position”, they return a column which is returned as
as Series which “inherits” the index

df = pd.DataFrame([[4,40],[5,50],[6,60]])
type(df[1])

pandas.core.series.Series

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- Data frames supports changing not only the index but also the column labels:

df = pd.DataFrame([[4,40],[5,50],[6,60]])
df.index = ['a','b", 'c']

df .columns = ['Rome', 'Venice']

print(df)

Rome Venice
40
50
60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- DataFrames can also be created directly from Python dictionaries, but remember
that you will not have any order guaranteed in the columns!

print(df)

df = pd.DataFrame({'Rome': [4,5,6],

'Venice':[40,50,60]})

Rome Venice
40
50
60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- DataFrames can also be created directly from Python dictionaries, but remember
that you will not have any order guaranteed in the columns!

df = pd.DataFrame({'Rome': [4,5,6], Rome Venice

'Venice':[40,50,60]}) 1o

50
print(df)

Rome Venice
40
50
60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas

2> DataFrames

DataFrames can also be created directly from Python dictionaries, but remember
that you will not have any order guaranteed in the columns!

print(df)

df = pd.DataFrame({'Rome': [4,5,6],

'Venice':[40,50,60]})

Rome Venice
40

50
60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas

2> DataFrames

At this point you can access the columns using their label in the square brackets
notation. Keep in mind that for the Series, this was instead accessing the “rows”.

print(df['Venice'])

df = pd.DataFrame({'Rome': [4,5,6],

'Venice':[40,50,60]})

Rome Venice
40

50
60

40
50
p) 60

Name: Venice, dtype: int64

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas

2> DataFrames

This mode still gives you a Series:

type(df['Venice'])

df = pd.DataFrame({'Rome': [4,5,6],

'Venice':[40,50,60]})

Rome Venice
40

50
60

pandas.core.series.Series

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- In order to instead get another DataFrame for a specific column (or more), you can
use the filter() function, or a bi-dimensional iloc() not covered here.

df = pd.DataFrame({'Rome': [4,5,6],
'Venice' :[40,50,60]})
print(df.filter(['Venice']))

Rome Venice
40

50
60

Venice
40
50
60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- In order to instead get another DataFrame for a specific column (or more), you can
use the filter() function, or a bi-dimensional iloc() not covered here.

df = pd.DataFrame({'Rome': [4,5,6], Rome Venice
'Venice' :[40,50,60]}) 40
type(df.filter (['Venice'])) >0

60
pandas.core.frame.DataFrame

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas

2> DataFrames

To access a row of a DataFrame, you can use the loc and/or iloc functions, which
access “by row”, exactly as for the Series... and returns a Series, in “horizontal”.

print(df.loc[@])

df = pd.DataFrame({'Rome': [4,5,6],

'Venice':[40,50,60]})

Rome Venice
40

50
60

Rome 4
Venice 40

Name: 0, dtype: int64

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas

2> DataFrames

To access a row of a DataFrame, you can use the loc and/or iloc functions, which
access “by row”, exactly as for the Series... and returns a Series, in “horizontal”.

type(df.loc[@])

df = pd.DataFrame({'Rome': [4,5,6],

'Venice':[40,50,60]})

Rome Venice
40

50
60

pandas.core.series.Series

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- You can also “elect” a data frame column as its index:

df = pd.DataFrame({'Quarter': ['q1l"',"'qg2"','q3"'],
'Rome': [4,5,6], Quarter
'Venice': [40,50,60]}) ql 4 40
df.set_index('Quarter', inplace=True) q2 >0
print(df) a3 o0

Rome Venice

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> DataFrames

- ..and you can plot DataFrames, as the Series and other Pandas data structures.

df = pd.DataFrame({'Quarter': ['q1','q2"','q3"'], I —
'Rome’ : [4,5,6], w/
'Venice': [40,50,60]}) “
df.set_index('Quarter', inplace=True) ;

plt.plot(df) 10
plt.show() a O e = &

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> How to read the documentation

- There are loads of operations which can be done on pandas objects.

- While classic (textbook-like) documentation is always useful, there is another
type of documentation that is good to know how to read:

— the API reference documentation.
- APl stands for the Application Programming Interface.

- When you use Pandas, you use its API!

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> How to read the documentation

& C @& pandas.pydata.org/docs/reference/index.html Q > % B O :
I::l pandas Getting started User Guide API reference Development Release notes v

Q_ Search the docs ...

API reference

Input/output This page gives an overview of all public pandas objects, functions and methods. All
General functions classes and functions exposed in pandas.* namespace are public.
Series

Some subpackages are public which include pandas.errors, pandas.plotting, and

DataFrame pandas.testing. Public functions in pandas. ic and pandas. tseries submodules are
pandas arrays, scalars, and data types mentioned in the documentation. pandas.api. types subpackage holds some public
Index objects functions related to data types in pandas.

Date offsets

Window Warning

GroupBy The pandas. core, pandas. compat, and pandas.util top-level modules are
Resampling PRIVATE. Stable functionality in such modules is not guaranteed.

Style

Plotting « Input/output

e o Pickling
General utility functions o Flat file
Extensions o Clipboard
o Excel
o JSON

HTMI

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
> How to read the documentation

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

& C & pandas.pydata.org/docs/reference/frame.html
L}
I.:l pandas Getting started User Guide API reference Development Release notes
DataFrame ~
pandas.DataFrame . .

A Attributes and underlying data On this
pandas.DataFrame.index page
pandas.DataFrame.columns Axes

Constructor
pandas.DataFrame.dtypes T ——
pandas.DataFrame.info DataFrame.index The index (row labels) of the DataFrame. underlying data
pandas.DataFrame.select_dtypes Conversion

DataFrame.columns The column labels of the DataFrame. Indexing, iteration
pandas.DataFrame.values i * =
inary operator
pandas.DataFrame.axes . functions
DataFrame.dtypes Return the dtypes in the DataFrame.
pandas.DataFrame.ndim Function
. application, GroupBy
pandas.DataFrame.size DataFrame. info([verbose, buf, max_cols, ...]) Print a concise summary of a & window
pandas.DataFrame.shape DataFrame. Computations /
pandas.DataFrame.memory_usage descriptive stats
- DataFrame.select_dtypes([include, exclude]) Return a subset of the DataFrame's Reindexing /
aviha R columns based on the column selection / label
pandas.DataFrame.set_flags dtypes manipulation

Missing dat

pandas.DataFrame.astype : ’:sd':ig A
al 1
pandas.DataFrame.convert_dtypes DataFrame.values Return a Numpy representation of Reshaping, sorting,
the DataFrame.
pandas.DataFrame.infer_objects transposing
das.DataF Combining /
pancas.Datariame:copy DataFrame.axes Return a list representing the axes comparing / joining

Pandas
> How to read the documentation

& cC & pandas.pydata.org/docs/reference/api/pandas.DataFrame.pct_change.html Q > % B O :

4| pandas
|4t P

pandas.DataFrame.pct_change

pandas.DataFrame.mean DataFrame.pct_change (periods=1, fill_method='pad', limit=None,
pandas.DataFrame.median freg=None, **kwargs) [source]

pandas.DataFrame.min Percentage change between the current and a prior element.

pandas.DataFrame.mode
Computes the percentage change from the immediately previous row by default.

pandas.DataFrame.pct_change D)) - K i)
This is useful in comparing the percentage of change in a time series of elements.

pandas.DataFrame.prod

pandas.DataFrame.product Parameters: periods : int, default 1

pandas.DataFrame.quantile Periods to shift for forming percent change.
pandas.DataFrame.rank fill_method : str, default ‘pad’

pandas.DataFrame.round How to handle NAs before computing percent changes.
pandas.DataFrame.sem limit : int, default None

pandas.DataFrame.skew The number of consecutive NAs to fill before stopping.
pandas.DataFrame.sum freq : DateOffset, timedelta, or str, optional
pandas.DataFrame.std Increment to use from time series API (e.g. ‘M’ or BDay()).
pandas.DataFrame.var **kwargs

pandas.DataFrame.nunique Additional keyword arguments are passed into DataFrame.shift
pandas.DataFrame.value_counts or Series.shift.

pandas.DataFrame.add_prefix Returns: chg : Series or DataFrame

pandas.DataFrame.add_suffix The same type as the calling object.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

End of part IV

> Questions?

Next: exercise 4

Stefano Alberto Russo - @stefanoarusso - s

Exercise 4

Let's go through an example together
Try to execute the commands we will see by yourself

First, download the file below and upload it to your Repl.it:
https://sarusso.github.io/python_courses/time_series.csv

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

