
Python Basic Course
 Part IV

Stefano Alberto Russo

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

● Part I: introduction and basics
○ What is Python
○ Tools and “hello world”
○ Basic syntax and data types

■ assignments, types and operators
■ conditional blocks and loops

● Part II: architecture
○ Functions
○ Scope
○ Built-ins
○ Modules

Outline
● Part IV: manipulating data

○ List operations
○ String operations
○ Dealing bad data
○ Reading and writing files

● Part VI: Pandas
○ Series and Dataframes
○ Common operations
○ How to read documentation

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ What is Pandas?

- Pandas is a “fast, powerful, flexible and easy to use open source data analysis and
manipulation tool, built on top of the Python programming language”

- Offers data structures and operations for manipulating numerical tables in form of
arrays and matrices, and time series to some extent.

- Pandas does not marry entirely the Python philosophy: often requires working with
indexes to iterate over data structures and adopting an “old-fashioned” mindset.

- The name is derived from the term "panel data", an econometrics term for data sets
that include observations over multiple time periods for the same individuals.

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ What is Pandas?

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ How to install Pandas?

- Being an extra Python library, it needs to be installed.

- The Python Package Manager can be used for this in nearly all environments:

- In Repl.it, it is automatically installed, so you don’t have to worry about it.

$ pip install pandas

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ How to use Pandas?

- As any other library, Pandas needs to be imported before you can use it

- You import libraries exactly as you import modules:

- You will usually see it imported in a renamed way, for brevity when using it

import pandas

import pandas as pd

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Other libraries involved

- Numpy (Numerical Python) is another very common library used
together with Pandas:

- Matplotlib is instead a library for plotting, and in particular the pyplot
module is very commonly used:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ The Jupyter Notebooks

- Pandas has a strong interactive component and for interactive analysis gives it best
when used with the Jupyter Notebooks

- These are computational graphical environments which wrap a Python interpreter

- Several services derived from this approach, as Google Colab or Kaggle Notebooks.

- Installing and using the Jupyter engine in your environment it is not covered here,
but just for reference:

$ pip install notebook

$ jupyter notebook

..and then open your browser on localhost:8888

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ The Jupyter Notebooks

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- Pandas Series are one of the most basic data types. You can think of them as
Python lists, but provide much more features.

series = pd.Series([4,5,6])

print(series[0])

 4

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- Series have an index to speed up data access. By defaults, it is just composed
by the positions of the elements

series = pd.Series([4,5,6])

print(series)

 0 4

 1 5

 2 6

 dtype: int64

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- Series have an index to speed up data access. By defaults, it is just composed by the
positions of the elements

series = pd.Series([4,5,6])

print(series)

 0 4

 1 5

 2 6

 dtype: int64

Index

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])

series.index = ['a','b','c']

 a 4

 b 5

 c 6

 dtype: int64

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])

series.index = ['a','b','c']

print(series[0])

 4

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])

series.index = ['a','b','c']

print(series['a'])

 4

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])

series.index = ['a','b','c']

print(series.iloc[0])

 4

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])

series.index = ['a','b','c']

print(series.loc['a'])

 4

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- However, other types of indexes are possible, for example based on letters, or dates
and time. They are more complex to deal with.

series = pd.Series([4,5,6])

series.index = ['a','b','c']

print(series.loc['a'])

 4

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- Both Series and their indexes supports being iterated on, and allow
to be more pythonic in some contexts:

series = pd.Series([4,5,6])

for item in series:

 print(item)

 4

 5

 6

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- Both Series and their indexes supports being iterated on, and allow
to be more pythonic in some contexts:

series = pd.Series([4,5,6])

for index_item in series.index:

 print(index_item)

 0

 1

 2

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- Several functions are ready to be applied to the series, unlike the Python lists.
Mean, min, max etc. are just some examples of them.

series = pd.Series([4,5,6])

print(series.mean())

 5.0

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ Series

- Several functions are ready to be applied to the series, unlike the Python lists.
Mean, min, max etc. are just some examples of them.

series = pd.Series([4,5,6])

print(series.max())

 6.0

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- DataFrames are basically matices. They support multiple axes, indexes,
and labels for columns.

df = pd.DataFrame([[4,40],[5,50],[6,60]])

print(df)

 0 1

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- DataFrames are basically matices. They support multiple axes, indexes,
and labels for columns.

df = pd.DataFrame([[4,40],[5,50],[6,60]])

print(df)

 0 1

0 4 40

1 5 50

2 6 60
Index

Column labels

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- If accessing them by “position”, they return a column which is returned as
as Series which “inherits” the index

df = pd.DataFrame([[4,40],[5,50],[6,60]])

print(df[1])

0 40

1 50

2 60

Name: 1, dtype: int64

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- If accessing them by “position”, they return a column which is returned as
as Series which “inherits” the index

df = pd.DataFrame([[4,40],[5,50],[6,60]])

type(df[1])

pandas.core.series.Series

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- Data frames supports changing not only the index but also the column labels:

df = pd.DataFrame([[4,40],[5,50],[6,60]])

df.index = ['a','b','c']

df.columns = ['Rome', 'Venice']

print(df)

 Rome Venice

a 4 40

b 5 50

c 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- DataFrames can also be created directly from Python dictionaries, but remember
that you will not have any order guaranteed in the columns!

df = pd.DataFrame({'Rome': [4,5,6],

 'Venice':[40,50,60]})

print(df)

 Rome Venice

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- DataFrames can also be created directly from Python dictionaries, but remember
that you will not have any order guaranteed in the columns!

df = pd.DataFrame({'Rome': [4,5,6],

 'Venice':[40,50,60]})

print(df)

 Rome Venice

0 4 40

1 5 50

2 6 60

 Rome Venice

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- DataFrames can also be created directly from Python dictionaries, but remember
that you will not have any order guaranteed in the columns!

df = pd.DataFrame({'Rome': [4,5,6],

 'Venice':[40,50,60]})

print(df)

 Rome Venice

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- At this point you can access the columns using their label in the square brackets
notation. Keep in mind that for the Series, this was instead accessing the “rows”.

df = pd.DataFrame({'Rome': [4,5,6],

 'Venice':[40,50,60]})

print(df['Venice'])

 0 40

 1 50

 2 60

 Name: Venice, dtype: int64

 Rome Venice

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- This mode still gives you a Series:

df = pd.DataFrame({'Rome': [4,5,6],

 'Venice':[40,50,60]})

type(df['Venice'])

 pandas.core.series.Series

 Rome Venice

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- In order to instead get another DataFrame for a specific column (or more), you can
use the filter() function, or a bi-dimensional iloc() not covered here.

df = pd.DataFrame({'Rome': [4,5,6],

 'Venice':[40,50,60]})

print(df.filter(['Venice']))

 Venice

0 40

1 50

2 60

 Rome Venice

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- In order to instead get another DataFrame for a specific column (or more), you can
use the filter() function, or a bi-dimensional iloc() not covered here.

df = pd.DataFrame({'Rome': [4,5,6],

 'Venice':[40,50,60]})

type(df.filter(['Venice']))

 pandas.core.frame.DataFrame

 Rome Venice

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- To access a row of a DataFrame, you can use the loc and/or iloc functions, which
access “by row”, exactly as for the Series… and returns a Series, in “horizontal”.

df = pd.DataFrame({'Rome': [4,5,6],

 'Venice':[40,50,60]})

print(df.loc[0])

Rome 4

Venice 40

Name: 0, dtype: int64

 Rome Venice

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- To access a row of a DataFrame, you can use the loc and/or iloc functions, which
access “by row”, exactly as for the Series… and returns a Series, in “horizontal”.

df = pd.DataFrame({'Rome': [4,5,6],

 'Venice':[40,50,60]})

type(df.loc[0])

pandas.core.series.Series

 Rome Venice

0 4 40

1 5 50

2 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- You can also “elect” a data frame column as its index:

df = pd.DataFrame({'Quarter': ['q1','q2','q3'],

 'Rome': [4,5,6],

 'Venice': [40,50,60]})

df.set_index('Quarter', inplace=True)

print(df)

 Rome Venice

 Quarter

 q1 4 40

 q2 5 50

 q3 6 60

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ DataFrames

- ..and you can plot DataFrames, as the Series and other Pandas data structures.

df = pd.DataFrame({'Quarter': ['q1','q2','q3'],

 'Rome': [4,5,6],

 'Venice': [40,50,60]})

df.set_index('Quarter', inplace=True)

plt.plot(df)

plt.show()

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ How to read the documentation

- There are loads of operations which can be done on pandas objects.

- While classic (textbook-like) documentation is always useful, there is another
type of documentation that is good to know how to read:

→ the API reference documentation.

- API stands for the Application Programming Interface.

- When you use Pandas, you use its API!

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ How to read the documentation

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ How to read the documentation

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Pandas
→ How to read the documentation

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

End of part IV
→ Questions?

Next: exercise 4

Stefano Alberto Russo - @stefanoarusso - sarusso.github.io

Exercise 4

Let’s go through an example together

Try to execute the commands we will see by yourself

First, download the file below and upload it to your Repl.it:
https://sarusso.github.io/python_courses/time_series.csv

